5G Readyness der Netze
Dr. Thomas Weidlich, Vodafone Germany

The introduction of 5G and new services like mobility, autonomous vehicle control, IOT, remote healthcare etc has a huge impact on the requirements towards the networks, ie lower latency (1-2 msec), higher throughput / peak data rates (>>1 Gbps), higher availability (99,999% or higher), security etc.  thus impacting network parameters by a factor of 10 to 100. We will show how these requirements will impact the design of carriers networks with a focus on networks from the mobile to the core sites.

Vernetztes und Autonomes Fahren und Testfelder an der A9 und in urbanen Zentren
Dr. Ralf Irmer, Vodafone Germany

Vernetztes Fahren mittels Mobilfunk ist heute Realität mit den meisten neuen Autos mit integriertem LTE. Ab 2018 ist wegen  vorgeschriebenen  E-Call  Connectivity in jedem Auto vorgeschrieben. Während heute vornehmlich Internet in the Car, Navigation, Telematikdienste, Logistikunterstützung, Stolen Vehicle Tracking etc  im Auto vorherrschen rückt  die Roadmap der Autoindustrie bis zum Level 5 (Autonomes Fahren) zunehmend in den Fokus. Cellular  V2X wurde für LTE im Frühjahr 2017 standardisiert und verbindet Fahrzeuge mit der Cloud, Infrastruktur, untereinander und mit Fußgängern. Im Vortrag werden der Stand der Standardisierung, Ergebnisse von Feldtests (z.B. an der A9), USe Cases und Technologien wie Edge Cloud vorgestellt. Weiterhin wird über Projekte zu diesem Thema berichtet.

zdn2017

Zukunft der Netze 2017

Poster Session, Lübeck

 

Practical Experiences and Lessons Learnt from the Pilot Deployment of
a Two-Tier Coordination Architecture for Industrial Automation Applications

Junaid Ansari, Maciej Muehleisen
[Abstract] [Poster]

Examination of NAT64/DNS64 Implementations
Andreas Hanemann, Xiaoqi Ma, Matthias Roeske
[Abstract] [Poster]

Urbane Pfadverlustmodelle für LoRa Smart City IoT-Netwerke
basierend auf empirischen Messungen bei 433 MHz und 868 MHz

Pascal Jörke, Stefan Böcker, Florian Liedmann, Christian Wietfeld
[Abstract] [Poster]

DRAISE - Drahtlose, Robuste, Adaptive, Industrielle Systeme
Swen Leugner, Leo Krüger, Andreas Timm-Giel, Horst Hellbrück
[Abstract] [Poster]

5G System Architecture and Security Concepts for Novel Vertical Application Domains
Christian Mannweiler and Peter Schneider
[Abstract] [Poster]

Leistungsbewertung kanalsensitiver Übertragungsverfahren
für zuverlässige Car-to-Cloud Kommunikation

Johannes Pillmann und Christian Wietfeld
[Abstract] [Poster]

Traffic of the Future: Modeling IoT Traffic Patterns
Sebastian Surminski, Florian Metzger, Tobias Hoßfeld, Poul E. Heegaard
[Abstract] [Poster]

Namenszentrische Ansätze zur Realisierung von Diensten im Internet der Dinge
Torsten Teubler, Horst Hellbrück
[Abstract] [Poster]

 

Cooperative driving requires wireless networks
Stephan Berg, Deutsche Telekom

Autonomous driving will have a huge impact on transportation and many other aspects of our daily life in future. Cooperative driving goes beyond autonomous driving: It covers the interaction of all the different road users like cars, trains, bicycles and pedestrians. Network evolution should support the multiple requirements. The network technology itself is important but market penetration of devices ("end points") and economics have to be considered as well.

Security Advances in the bwNET100G+ Project
Michael Menth, Universität Tübingen

BelWue is the Internet service provider for academic and research institutions in Baden-Wuerttemberg. When its core network was upgraded to 100G, the bwNET100G+ project was launched to bridge network operation and cutting edge research. The flexibility brought along by software-defined networking (SDN) and the support for bandwidths of up to 100G in core and campus networks are focus of the project. In this talk, we present three exemplary advances in the field of security. First, we show how authentication and authorization (AA) using IEEE 802.1X and RADIUS can be leveraged in OpenFlow-based SDN domains. This allows to improve security and flexibility through a network-wide session database and the integration of additional AA resources compared to classic deployment. Second, firewalls often cause networking bottlenecks.We explain how SDN can be leveraged for static and dynamic firewall bypassing in congestion situations and discuss the feasibility of that approach. Third, we present an SDN-based mitigation approach for distributed denial of service (DDoS) attacks that leverages SDN to flexibly inspect, redirect, and shape traffic during DDoS attacks. Furthermore, real users may use CAPTCHAs to whitelist their traffic in case of false positives.

A new Paradigm for Networking Infrastructure in Healthcare
Christian Korff, Cisco Deutschland

The presentation describes the paradigm shifts within networking and how they apply to infrastructure use cases within healthcare. A dynamic approach to networking capabilities unleashes a new era of networking. Application Centric Infrastrutcure leverages controller based real time networking by also enabling hyperawareness for the controller based analytics. This creates valuable use cases in which for example secured traffic can be analyzed without being decrypted. This provides the capability to execute advanced thread analysis for secured network connections. The healthcare system is undergoing a huge information. Medical devices are ubiquitously connected, patient data exchanged this creates multidimensional requirements for the networking infrastructure and its operation processes.

5G – From Vision to Reality
Dr. Michael Meyer, Ericsson, Germany

5G is envisioned as the communication network that enables the connected society. In the meantime 5G standardization has intensified and major technology decisions have been taken in 3GPP. This presentation will outline the current status of the standardization and explain the time schedule towards a complete standard. Additionally, results from early trial systems will show how advanced use cases can be supported with next generation’s radio technology.

Funksystem für industrielle Anwendungen - HiFlecs
Frank Bittner, Universität Bremen

Das BMBF-Förderprogramm „Zuverlässige drahtlose Kommunikation in der Industrie (ZDKI) adressiert die Erforschung von Funktechnologien für industrielle Anwendungen, insbesondere im Kontext von Industrie 4.0. Die neuartigen Funktechnologien sollen vor allem den Anforderungen im Regelungsumfeld (Closed-Loop-Control) genügen und dabei auf extrem geringe Übertragungszeiten bei gleichzeitig höchster Verfügbarkeit ausgelegt sein. Das in diesem Programm von der Universität Bremen geleitete Projekt HiFlecs hat das Design eines neuen industriellen Funksystems zum Ziel. Die zentralen Aufgaben sind die Erforschung latenzarmer, sicherer und zuverlässiger Funkverfahren und der Nachweis der praktischen Leistungsfähigkeit dieser Verfahren durch deren Umsetzung in Automatisierungssystemen der Fertigung. Schwerpunkt ist die Erforschung neuer Technologien der PHY- und MAC-Ebene, des Netzmanagements und der Applikationsebene. Hierbei wird im Projekt auf die vier Kerntechnologien Adapative PHY/MAC Technologien, Koexistenz-Management, Intergrierte Informationssicherheit und Abbildung von verteilten Anwendungsfunktionen fokussiert. Das neue Funksystem nutzt den Frequenzbereich von 5,8GHz. Hierzu wurden in Abstimmung mit den anderen ZDKI-Projekten Kanalmessungen in industrieller Umgebung durchgeführt. Die im Rahmen des Projektes entwickelte HiFlecs-Systemarchitektur besteht aus einem zentralen HiFlecs-Funkzellenmanagement, an das sowohl zukünftige HiFlecs-Basisfunkmodule als auch funktional erweiterte HiFlecs I4.0-Funkmodule angebunden sind. Letztere beinhalten eine Applikationsebene, die die Funktionalitäten des Regelprozesses abbildet. Somit werden verteilte Anwendungsfunktionen ermöglicht, die deutlich über das einfache Erfassen einer Messgröße oder das Ansteuern eines Aktors hinausgehen. Es werden die verschiedenen Anforderungsprofile für die Szenarien Roboterzelle, Shuttlesystem und Transportsystem adressiert.

Security Policy driven Security Orchestration for Distributed Cloud Services
Manfred Schäfer, Nokia Bell Labs

The presentation discusses concepts for security management (SM) and orchestration for distributed cloud services, elaborated in the Celtic-Plus SENDATE-PLANETS project. The concepts are targeting Telco Clouds (TC), but also embrace mixed cloud systems. Starting with ETSI NFV and the MANO architecture we demonstrate, how to evolve SM towards distributed services in multi-provider, multi-tenant environments. Based on typical security scenarios we analyze essential requirements for automated and adaptive SM and present approaches to enable and to organize centralized, service-oriented, and automated SM, driven by security policies. Besides challenges emerging from the flexibility and dynamicity of virtualization, hybrid aspects are considered, as usually Telco Clouds cannot be realized and secured by virtualized systems alone, but must always interact with non-virtual systems (e.g., due to usage of physical network technology and the need of physical security appliances). Moreover, datacenters not only vary in virtualization technologies, but also due to regulative and legal reasons - such as obligatory requirements of lawful interception and of privacy protection, depending on the regions over which services may be spread. To enable interfacing between different realms, we introduce Security Management Service Points (SMSP). SMSPs coordinate and mediate security management across administrative domains and support dynamic security policy negotiation, as well as SM automation based on agreed, trusted relationships. Our concepts rely on security policies to describe security requirements and capabilities and to support automation at several stages of a distributed Security Management Life Cycle Process for services.